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A modification of the computational technique for flash calculations using an equation of state 
has been developed. The procedure consists in the double application of the Newton-Raphson 
method (DAN) to the set of equilibrium conditions. The algorithm is designed to minimize 
the number of iterations. It is, therefore, especially useful in successive calculations, where 
a family of solutions at slightly changing conditions is desired. 

Computations of phase equilibria in chemical engineering practice are devoted 
mainly to flash calculations, which include a broad variety of tasks. A typical task 
involves calculation of composition of two equilibrium phases at specified feed 
composition and two additional variables chosen among temperature, pressure and 
vapour to feed mole ratio. The conventional approach to the solution of such a prob­
lem issues from a first estimate of the equilibrium ratios. Mass balance equations 
arranged in a convenient criterion then give a value of the fractional vaporization. 
This in turn yields new estimates of the equilibrium phase composition and thus 
provides new values of the equilibrium ratios. This procedure is repeated until 
convergence is achieved 1- 3. The equilibrium ratio is usually assumed to be inde­
pendent of composition within the iteration loop .. 

The method suggested in this work is a modification of the previously developed 
procedure4 • It is based on solving the set of equilibrium conditions including the 
equality of fugacities and mass balance equations. It adopts the Newton-Raphson 
method, which in comparison with conventional procedures is applied twice. First, 
to solve the set of equilibrium conditions to obtain equilibrium quantities. Second, 
to determine the first estimate of the next equilibrium point. The method is thus 
called the DAN method to denote the Double Application of the Newton-Raphson 
method. Methods similar to that described here has been published lately by Asseli­
neau and coworkers5 and by Michelsen6 • In the present approach density rather 
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than pressure is considered 'as independent variable. Most of the problems in finding 
densities of equilibrium phases are thus avoided. All partial derivatives that are 
required for the Newton-Raphson method are evaluated analytically using dimen­
sionless quantities. This facilitates the application of any equation of state if an algo­
rithm that provides dimensionless quantities is supplied. 

As presented here, the procedure is applicable to equilibrium separation calcula­
tions in multi component systems where a feed stream is split into liquid and vapour 
stream. The extension to three phase systems is straightforward. A similar procedure 
has also been designed for bubble and dew point calculations 7 • 

THEORETICAL ' 

Flash calculation by an equation of state is based on solving the following set of equilibrium 
conditions and mass balance equations 

p = pL = p(T,dL,x), 

P = pV = p(T,dV,y), 

f~ = fi(T, dL, x) = l( = fi(T, dV, y), 

(1 - 4» Xj + 4>Yj = Wj' 

i = 1, 2, ... , N, j = 1, 2, ... , N - 1 , 

(1) 

where p denotes the pressure, T is the temperature, Ii is the fugacity of i-th component and d is 
the saturated density. The superscripts L and V indicate the liquid and vapour phases, respectively. 
x and yare vectors of N - 1 independent mole fractions in the liquid and vapour phases, res­
pectively [x = (Xl' X2' •.. , XN-l), y = (Yl' Y2' •.. , YN-l)]' W is the vector of the feed composi­
tion mole fractions [w = (Wi' W2' .•. , WN-l)]' tP is the vapour to feed mole ratio, also called 
fractional vaporization, defined by 

(2) 

with nL and nV being the moles in liquid and vapour phases, respectively. nL and nV may also 
denote the flow rate quantities expressed in moles per time. Set (1) consists of 2N + 1 nonlinear 
equations which contain 3N + 2 variables T, p, ;z" dL, dV, x, y, w. Therefore, N + 1 variables 
have to be known in advance, before the remaining 2N + 1 unknown ones are calculated by solv­
ing the set of Eqs (1). According to the quantities specified, several problems may be considered. 
The discussion here is devoted to the three following problems encountered most frequently 
in chemical engineering practice. In all cases the feed composition is given. The additional quanti­
ties specified are the foIlowing: temperature and pressure; temperature and vapour to feed mole 
ratio; pressure and vapour to feed mole ratio. 

A computational technique proposed here is based on the double application of the Newton­
-Raphson method to the first three equations of set (1). The Newton-Raphson method requires 
that partial derivatives of pressure and fugacity with respect to temperature, density and com­
position are available. These derivatives can easily be evaluated using the dimensionless quanti­
ties given in Appendix B of the paper by Novak and coworkers 7 . 
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A detailed description on the application of the suggested procedure to isothermal flash 
calculation with specified variables of temperature, pressure and feed composition is presented 
below. The other two problems mentioned above entail merely the modification of the set of equi­
librium conditions. In general, the solution follows the same pattern as described for isothermal 
flash calculation. 

By expanding the last equation of set (I) in a Taylor series and cancelling all but linear terms 
we get 

where 

(4) 

Let us expand the vapour phase pressure in a Taylor series and cancel all but linear terms. If we 
substitute in the expansion for AYj expressed from Eq. (3), we obtain 

pV = p'6 + (ap/aT)'6 ilT + (ap/ad)'6 ildv + 
N-I N-I 

+ L (ap/aYj)X (<p - 1)/<P ilxj - L (ap/aYj)'6 (Yj - Xj)/<p il<P + 
j=l j=l 

N-I 

+ L (ap/aYj)X c)<p , (5) 
j=l 

where (ip/oT)X, (op/od)X, (Cp/oYj)X are the derivatives of pressure determined at specified 
T, dV , y with the composition of the vapour phase obtained from the last equation of set (1). 

By expanding the fugacities of components in a similar way as described for pressure, the set 
of Eqs (J) becomes 

N-I 
(ap/ad)L AdL + L (ap/aXj)L AXj = p - p~ - (ap/aT)L AT, 

j = I 

N-l 

(ap/ad)y Adv + L (ap/aYj)V (<p - 1)1<p AXj -
j=l 

N-I 

- L (oplayJv (Yj - Xj)l<p A<P = p - pi; - (ilplaT)V AT + 
j=1 

N-l 

- L (aplaYj)y cjl<p, 
j=l 

N-I 
+ L [(a/;jaXj)L + (1 - <p)I<p . (uf;joYj)V] AXj + 

j=l 
N-I 

+ L (of;jaYj)Y (Yj - xJI<p A<P = 
j=l 

N-I 

= (Ji)X - (J;)~ + [(Ofi/aT)Y - (Ofi/oT)L] AT + L (Ofi/(IYj)V cjl<p , (6) 
j=l 

i = 1,2, ... , N . 
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Thus the set of N + 2 equations with N + 2 unknowns dV, dL, rJ>, x is obtained. The flow diagram 
of the computational procedure is shown in Scheme I and entails the following steps: 

/) for the given T, p and wa first estimate of variables dL , dV, .Y, y, rJ> must be supplied. This 
can be done by using, for example, Raoult's and Amagat's laws. Details are given in Appendix A. 

2) Coefficients of the set of Eqs (6) are evaluated using values of dL , d V , y and rJ> determined 
in the preceding step. The increment ft. T is equal to zero. By solving the set of Eqs (6) the incre­
ments ft.dL, ft.dv, ft.x and ft.rJ> are obtained. 

3) Quantity S is calculated by 
N-\ 

S = (AdVjd~c)2 + (AdL jd;J2 + (A<p)2 + L (AXj)2 , (7) 
j = 1 

where pseudocritical densities d~c and d:c are given by 

N N 

d;c = L xi(dc)i , d~c = L y;(dC)i . (8) 
;=1 i=l 

According to the size of S, three different cases may occur: 

3. J) If S is less than eo, the flash calculation is finished. A value of the convergence tolerance 
eo = 10 - 7 is recommended as being sufficiently low in many cases where single precision is 
employed. 

3. 2) If S exceeds a maximum step e1 :::::: 0·1 permitted in one iteration, values of calculated 
increments are reduces by 

where I/f stands for d L , d v, rJ> and x. After reduction the calculation proceeds to step 3.3. 

3. 3) If the relation eo < S ~ 81 is fulfilled, new values of variables are calculated 

(9) 

(10) 

where I/f is d L, dV, rJ> and x. A new value of the vapour phase composition is obtained from 
the last equation of set (1). The calculation then continues to step 2. 

4) If it is desired to perform additional calculations at changed conditions of temperature, 
pressure and/or feed composition, the solution for given T, p, w, i.e. values of d L , d V , rJ>, x, y 
are utilized to obtain the first estimate of the next point characterized by Til' PII, wlI' The dif­
ference in temperature yields the increment ft.T = Tll - T. Using this increment, adding the 
difference in pressure Pll - P to the first two equations of set (6) and calculating new Cj according 
to Eq. (4), the new right-hand sides of the set of Eqs (6) are evaluated. The coefficients on the 
left-hand sides are known from the last iteration step of the preceding point. 

5) The solution of the set of Eqs (6) with the coefficients of the matrix obtained in step 4 
gives new values of increments MV, ft.d L, ft.rJ> and ft.x. Thus, a new value of S is determined. 
According to its size, two cases are considered: 

SCHEME I 

Flow diagram for isothermal flash calculation (figures above boxes indicate the steps as de­
scribed in text). 
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5. 1) If S is less or equal to a maximum step allowed along the equilibrium curve 82 ::::; 0'1, 
the values of 'i'll given by 

I/II! = 1/1 + AI/I (1J) 

('i' = d Y , d L , </>, x) are. used for the calculation of the equilibrium point specified by TIl' PI! 
and wI!' The calculation now returns to step 2. 

5. 2) If S is greater than 8 2 the next equilibrium point is too far from the preceding one. Then 
it is desirable to insert an intermediate step thus ensuring the calculation not to fail. In this 
case the intermediate point is calculated with the parameters 

(12) 

where 'i' stands for T, P, d L , d V , x, w. Here the calculation is also returned to step 2. 

DISCUSSION 

Finally, the applicability of the DAN method to isothermal flash calculation is 
presented. Vapour-liquid equilibrium data on the methane-ethane-propane-toluene­
-t-methylnaphthalene system by Li and coworkers8 were chosen for illustration. 
The computations were performed using the Soave-Redlich-Kwong equation 
of state9 with interaction parameters given by Li and coworkers8 • The value of the 
convergence tolerance eo was set to 1 . 10- 12 • 

The mixture composition is as follows: methane 31 mol %, ethane 8 mol %, 
propane 6 mol %, toluene 33 mol %, 1-methylnaphthalene 22 mol %. In Table I, 
the number of Newton-Raphson iterations required to converge p, T specifications 
when proceeding from one equilibrium point to another is shown. The ability of the 
DAN method to find the solution even if the equilibrium point is rather far from the 
previously specified one is also illustrated in Table 1. Convergence was obtained 
between two equilibrium points having the difference in pressure higher than one 
order of the magnitude. 

The DAN method suggested here is very effective as it provides both the solution 
of the specified problem and a very qualified first estimate of the next equilibrium 
point. This enables to proceed from one equilibrium point to another one rather 
quickly and to achieve convergence within a few iterations. In successive computa­
tions, such as, for example, column calculations, the procedure offers a wide variety 
of applications. Its convergence efficiency does not depend on the number of variables, 
for example temperature, pressure or feed composition, that are changed when pro­
ceeding between equilibrium points. 

The estimate of the next equilibrium point is obtained using a linear approximation 
of the path between two adjacent points. The procedure is therefore especially con­
venient for multicomponent mixtures as it leads to a set of linear equations only. 
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None of the variables to be calculated, for example liquid and vapour phase 
composition, vapour to feed mole ratio, liquid and vapour phase densities in iso­
thermal flash calculations, is assumed to remain constant within the iteration loop. 
The convergence efficiency is thus enhanced in comparison with most conventional 
methods. 

The procedure has been developed for use with a single equation of state. All partial 
derivatives which are necessary for the application of the Newton-Raphson method, 
are evaluated analytically employing the dimensionless quantities. Most of the 
computational problems due to the approximation of derivatives by finite dif­
ferences may thus be avoided. 

APPENDIX 

Determination of Estimate of Equilibrium Quantities 

The estimate of equilibrium quantities, i.e. vapour to feed mole ratio or temperature or pressure, 
composition of liquid and vapour equilibrium phases and liquid and vapour phase densities, 
is determined assuming the ideal solution (Raoult's law) and the ideal behaviour of the vapour 
phase (Dalton's law). The pure component vapour pressure and the vapour and liquid phase 
densities are estimated by using Eqs (A2) to (A6) given in Appendix A of the paper by Novak 
and coworkers 7 . 

The following procedures are adopted for particular cases discussed in the paper. 

TABLE I 

Number of Newton-Raphson iterations required to converge p, Tspecifications when proceeding 
from one equilibrium point to another one 

---------

Preceding point Next point No of 
iterations 

T,K p, MPa T, K p,MPa 

377-6 1'379 4" 
377'6 1'379 377-6 2·758 3 
377·6 10'34 377-6 12'07 4 
377·6 12·07 410'9 14'09 3 
410·9 1·648 444'3 1-407 4 
377-6 1-379 377-6 13-79 15b 

444-3 13-64 377-6 1-379 7c 

a Initial estimate obtained by Raoult's law; b two intermediate steps automatically supplied by 
the algorithm required (82 = 0-15); (the (p, T) coordinates of the intermediate steps: (377'6 K, 
3-539 MPa), (377-6 K, 7-726 MPa); C one intermediate step having the (p, T) coordinates (383-6 K, 
2'472 MPa) required (82 = 0·15). 
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1) Flash calculation/or specified T, p, w. For a given temperature T, the ideal vapour-liquid 
equilibrium K-values are calculated by 

K; = p~/p. i = 1,2, ... , N . (AI) 

The estimate of the vapour to feed mole ratio is obtained by solving the equation (see e.g. King!) 

r w;(Kj - 1) = O. 
;=1 1 + <P(Kj - 1) 

Applying the Newton-Raphson method, the (j + l)-th approximation of tP is given by 

r Wj(K; - 1) 
;=1 1 + <Pj(K - 1) r wj(Kj - 1)2 . 

1=1 [1 + <Pj(Ki - 1)]2 

(A2) 

(A3) 

The first guess of tP is set to 0·5. The equilibrium composition of the liquid and the vapour phases 
is found by using tP and K j determined previously 

Yi = Kjxj, i = 1, 2, ... , N . 

(A4) 

(A5) 

2) Flash calculation for specified T, tP, w. The estimate of pressure is found from Eq. (A2) 
which can be modified with the aid of Eq. (AI) to give 

For Pj+1 then follows 

r wi(pP - p) = F = O. 
j=1 P + <p(pP - p) 

(A6) 

(A7) 

where F j is the value of function F determined at the temperature Tj • The first approximation 
of pressure needed for the application of Eq. (A7) is calculated from 

In p = In Ppc + 6'9(1 - Tpc/T). (A8) 

Pseudocritical temperature and pressure are evaluated by the Kay rule using the specified feed 
composition w. Composition of equilibrium phases is determined by Eqs (A4) and (A5) with 
equilibrium K-values calculated from the known vapour pressure and the estimated total pres­
sure. 

3) Flash calculation for specified p, tP, w. The estimate of temperature is found from (A6). 
Using the vapour pressure equation (Eq. (A2) in the work 7), it follows for T j + 1 
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1 Fj/p 
----- = -- -- ------------------------------~~----------------------------

~ wjp?[ --B/Tr~ + C/T.j + 6DTr~ + ro i ( --F/Tr~ + O/T.I + 6HTrm . 1j+ 1 1j 
j= 1 TCj[p + 4>(p? -- P)]~=TJ 

(A9) 

The first approximation of temperature is obtained from Eq. (A8). The next steps are analogous 
to those described above for flash calculation at specified T, tfJ, w. 

LIST OF SYMBOLS 

d molar density, d = n/ V 
f fugacity 
K vapour-liquid equilibrium K-value 
II number of moles 
N number of components 
p pressure 
pO pure component vapour pressure 
R gas constant 
S quantity defined by Eq. (7) 
T temperature 
V volume 
V m molar volume 
W vector of feed composition mole fractions 
x vector of liquid phase mole fractions 
y vector of vapour phase mole fractions 
eo convergence tolerance 
1:( maximum step permitted in one iteration 
1:2 maximum allowed step along the equilibrium curve 
<P vapour to feed mole ratio 
(,) acentric factor 

Subscripts 

c critical property 
i-th component in the N component system 

pc pseudocritical property 
r reduced property 

Superscripts 

L liquid phase 
V vapour phase 
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